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1. Phy.: Condens Matter 4 (1992) 3087-3108. Printed in the UK 

Density fluctuations and field mixing in the critical fluid 

N B Wilding and A D Bruce 
Department of Physics. ’Ihe Uoiversily of Edinburgh, Edinburgh EH9 3J2, UK 

Received 20 November 1991 

Absiraei We develop a finite-suemaling theory describing the joint density and energy 
fluctuations in a near-mitical fluid. As a result of the mixing of the lemperalure and 
chemical potential in the WO relevant scaling fields, the energy operator features in the 
crilical density distribution as an antisymmetric mrrestion lo the Limiting ale-invariant 
form Both the limiling form and the correction am predicted to be fuaetions that are 
characteristic of lhe king universality dass, and am independently knom. The theory is 
tested with extensive Monte Carlo studies of lhe lvmdimensional LennardJones fluid, 
within the grand canonical ensemble. The simulations and sgling framework together 
are shown to prwide a powerful way of identifying lhe loCalion of lhe liquid-gas aitical 
point, while confirming and darimng its esenlially king charader. ’Ihe simulations also 
show a clearly identifiable signature of the rield-mixing responsible for the hilure of ihe 
law of rectilinear dismeler. 

1. Introduction 

Within the contemporary framework, the theoretical problems posed by a given mn- 
tinuons phase transition fall naturally into two categories. First one may wish to 
establish the universality class [I] to which the phase transition belongs, thereby 
identifying the values of the universal quantities characterizing the critical behaviour. 
Second one may wish to determine the set of non-universal quantities (notably those 
that locate the critical point, and the associated relevant scaling fields) in terms of 
the parameters describing the microscopic interactions. Notwithstanding its familiar- 
ity, the continuous phase transition associated with the liquid-gas critical point of the 
simple fluid continues to p e  problems in both categories: we consider them in turn. 

It has been both long and widely believed [Z] that the liquid-gas critical point 
falls into the universality class of the simple king model, the default for systems 
with short-range interactions and a scalar order parameter. There is substantial cir- 
cumstantial evidence supporting this view (31: the measured values of the liquid-gas 
critical indices are, it now seems generally agreed, quite consistent with the values 
emerging from both series expansion studies of the three-dimensional lattice Ising 
model, and renormalization group studies of its continuum counterpart The direct 
evidence is less satisfying. Analytic studies have focused on a partially phenomeno- 
logical Landau-Ginsburg-Wilson Hamiltonian incorporating ‘odd’ terms to reflect the 
absence of particle-hole symmetry characteristic of real fluids: expansions in 4 - d 
show [4, 51 that such terms constitute perturbations that are irrelevant with respect 
to the conventional king fixed point of the renormalization group, suggesting that 
the king behaviour does indeed suMve the lowered symmetry, at least ‘near’ dimen- 
sion d = 4. However the ‘path’ (renormalization group flow process) that connects 
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a realistic microscopic fluid model Hamiltonian to the Ising fixed p i n t  form (in 
physical dimensions!) remains largely unexplored, and its very existence open to 
question [6]t. As regards computer-simulation determination of the universal critical 
behaviour, there is, to our knowledge, no work remotely comparable with the work 
on lattice models. 

The extent of the current knowledge of non-universal features of the critical 
behaviour in even the simplest model fluids is also severely limited by the dearth 
of large-scale simulations conducted with an understanding of the problems posed 
by the critical region. Thus, for example, studies of the prototype model fluid (the 
two-dimensional Lennard-Jones model, also the subject of the present work), have 
yielded [7-101 wildly varying assignments of the critical temperature, largely (we 
believe) because of a failure to appreciate the scale and character of finite-size effects. 
Moreover, none of these studies has attempted to explore the physical character of 
the relevant scaling fields, which (it has long been appreciated [l l])  should comprise 
mirrures of the chemical potential and the temperature. This ‘mixing’, a manifestation 
of particle-hole asymmetry, is a fundamental issue in the theory of critical fluids. Its 
most widely celebrated signature-the failure of the ‘law of rectilinear diameter’ 
[Ill-has elicited considerable experimental activity [12-161. While there b some 
understanding of the microscopic factors controlling the size of the effect [17-191, little 
attention seems to hab’e been given to whether it might have some other signature, 
more accessible to simulation experiments. 

Two recent papers have made some inroads into at least some of these problems. 
First, Reatto ec ul 1201 have developed a computational formalism, originally set 

out some time ago [21], having a renormalization-group flavour, and with the potential 
to predict both universal and non-universal critical-point parameters. The results are 
numerically impressive. However the approach seems to rely implicitly on a small 
‘4 - d‘ approximation, and, because of the originality of its formulation, does less 
than one might wish to illuminate the respects in which the fluid ‘belongs’ to the 
Ising universality class. 

By contrast, the work of Rovere ec a1 122, U] b a natural extension to the fluid 
problem of techniques developed by Binder and others [24, U] to handle lattice-based 
problems. The approach involves the Monte Carlo study of the distribution of fluctua- 
tions in the densify of the fluid contained within some sub-volume of linear dimension 
1 of a system of linear dimension L, the system itself containing a fired number of 
particles. Although having the advantages associated with a well established formal- 
ism (including the potential to expose the connection with ising magnets) the results 
emerging from this study are largely qualitative, in part (we believe) because of the 
difficulties of handling the WO length-scales 1 and L. Moreover, the whole issue of 
the nature of the scaling fields was not addressed. 

The strategy of the present work is close in spirit to that of Rovere et a1 [22, U] but 
with significant differences and extensions. Its essential features are as followst. We 
have performed an extensive Monte Carlo study of a two-dimensional fluid of particles 
interacting through a (truncated) Lennard-Jones potential. The principal motivation 
for the model b its simplicity: it represents the most computationally uactable system 
with the credentials (notably the symmetry) of a real fluid. However, notwithstanding 
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t Note, however, that Zhang and Badiali (1991) have recently provided a field-theoretic renormalizatlon 
group analysis of the fluid problem, avoiding lhe Iandau4insburg phenomenology, and mnflrming lhe 
stability of the king heed point within a 4 - d expansion. 
i A h i e l  preliminaty report of this work has been given elsewhere [26]. 
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its simplicity. the model does have direct experimental relevance for submonolayer 
systems [27]. We have chosen to work within the rand canonical ensemble so that 
the density of the system us a whole is itself a statistical variable, whose distribution 
we analyse within a finite-size-scaling framework This approach frees us of the 
extra length-scale that complicates the ('sub-volume') method of Rovere et d, while 
allowing us to make explicit quantitative contact with studies of the fluctuations of 
the magnetization in the canonical ensemble of the Ihttice-based members of the 
two-dimensional Ising universality class. In the process, we have developed the more 
general @re-size-scaling rheory needed to address the interplay of density and energy 
fluctuations, which is an essential corollary of the mixed character of the relewnt 
scaling fields (specifically, the fact that the chemical potential features in the thermal 
field). We show, in particular, that this miXing manifests itself in a correcfwn to the 
limiting large L behaviour of the critical density distribution. This correction has 
a differenr .ry"efy from the asymptotically dominant form (it is an odd function); 
moreover its form is shown to be prescribed by independently defermined functions 
characteristic of the king universality class. Accordingly it represents a potentially 
distinctive signature of the field-mixing. 

We summarize the main features of our results. First, we provide good evidence 
that the critical-point distribution of the fluid density matches quantitatively the critical 
distribution of the magnerization of the king magnet, thereby confirming the status 
of the fluid as a member of the Ising universality class, and exposing more fully its 
meaning. Second, we find that the mapping onto universal king-like behaviour sets 
in at remarkably short length-scales, being evident already in systems containing only 
(a mean of) the order of lo2 particles. Third, our results suggest that most previous 
analyses of this system have significantly overeshnaled the critical temperature as a 
result of a failure to handle finite-size effects, whose character is graphically exposed 
by the present analysis. Finally, our results provide substantial corroboration of our 
extended scaling theoly, and show a clear signature of the mixing responsible for the 
failure of the law of rectilinear diameter. 

2. Background 

We consider a classical single-component fluid whose configurational energy + (which 
we \h7ite in units of k,T) resides in a sum of painuse interactions amongst the N 
particles it contains: . 

The interaction potential 4 is assigned the Lennard-Jones form 

where c is a parameter which serves to set the interaction range while w measures 
the well depth (in units of k,T). The fluid is confined to a volume V = Ld (with 
d = 2 in the simulations described later) and is thermodynamically open, so that 
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both the total energy and the particle number are statistical variables. The associated 
(grand canonical) partition function takes the form: 
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where p is the chemical potential (in units of Ic,T). 
We shall be concerned with the behaviour of the number density 

p =  L- d N  (2.44 

U = L - d w - l @ ( { r } )  (2.46) 

and the configurational energy demiry 

which we ~ t e  in units of the dimensionless well depth, w .  The statistical behaviour 
of these variables is fully described by their joint probability distribution, defined 
formally by 

p L ( p , ~ )  = (6 [ p -  L-dN] 6 [U - .L-d~-l@((~])]) (2.5a) 

or, more explicitly, 

We shall focus specifically on the region close to the critical point, which is located 
(within the grand canonical framework) by critical values p c  and wc of the (reduced) 
chemical potential and well depth. The deviations of these two control parameters 
from their critical values will control the sizes of the two relevant scaling fields, T 

and h, of the fixed point characterizing the critical behaviour [B]. In general (in the 
absence of the special symmetry prevailing in the king ferromagnet) we expect [ll] 
that these scaling fields will comprise linenr combinntiom of these deviations: 

7 = w, - w + s(p  - p c )  h = p - pc + r(wc - w )  (2.6) 

where s and r are system-specific parameters controlling the extent of the mixing, 
and vanishing identically for systems with the king symmetry. Associated with thesc 
two scaling fields are the two relevant conjugate operators, ,5 and M ,  defined by the 
requirements that 

( E )  = L-dain zL/a7 ( M )  = L-dain 2 ~ a h  (2.7) 

and identifiable in the Ising context as the energy density and magnetization respec- 
tively. As a result of the mixed character of the scaling fields, one finds that, in the 
present context, these operators are linear combhations of the energy and number 
densities: 

1 1 
[ U - r p ]  M =  __ [P - S U I .  E = -  

1 -ssp 1 - s r  
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The joint distribution of energy and density is simply related to the joint distribution 
of the mixed operators: 

(2.9) 

For the limiting near-critical behaviour of this joint distribution we make the following 
finite-size-scaling MSUIZ: 

p,(M,&) cz A;Az$M,,(A;bM, Az6&, A M  h ,  A C T )  (2104 

where 

A, = a,L x A~ = a M L  x M A ~ A ; ~ (  = A& = L~ 

and 

6M E M  - ( M ) ,  6 f s  & -  (&)c (2. loc) 

with 

A, = 11” A, = d - p / u  (21W 

the exponents associated with the two relevant scaling fields. The subscripts c in 
equations (ZlOc) signify that the averages are to be taken at criticality. Given appro- 
priate choices for the non-universal scale factors aM and a, (equation (2.10b)), we 
anticipate that the function p M , ,  will be universal. 

We motivate and qualify these proposals with the following remarks. 
First, we note that they constitute a generalization of the finite-sizescaling ansatz 

for the order-parameter (magnetization) distribution in systems with the Ising symme- 
try [24] which is recovered, in the present framework, with the identifications M -+ A4 
(the magnetization), C - E (the energy density), 7 -+ t (the reduced temperature), 
with h the magnetic field, and formal integration over the energy fluctuations to yield: 

( 2 l l a )  

C M ( ~ , Y , ~ )  E A: d f f i ~ , & ( z , A : 6 & , Y & ) .  (211b) 

Equation (2l la)  has been well explored. It has a solid renormalization group ba- 
sis [29], and substantial support from both Monte Carlo studies [30] and explicit 
renormalization group calculations (311. 

Second, it is easily checked that equation (2.10~) is consistent with the standard 
theory of fluctuations in macroscopic systems [32] according to which (in the regime in 
which the system size L is large compared with the mrrelation length [, realized here 
when A,r  >> 1) the operators M and &will be Gaussian-distributed about their mean 
values, with variance controlled by an appropriate response function (order-parameter 
susceptibility, or specific heat). 

J 
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Third, and more specifically, it is readily shown that equation (2lOn) leads to a 
coexistence curve diameter pd (the mean of the densities of the two phases which 
mexist on the h = 0 line, for T < 0) displaying an energy-like singularity, and with 
an amplitude proportional to the parameter s controlling the extent to which the 
chemical potential p contributes to the scaling field T :  

pd - Pc s l i l ' - p  (2.12) 

where p, e (p),, and we have made use of standard scaling relations. This is the 
behaviour anticipated in scaling theories of the fluid freeenergy or equation of state 
[ll, 191 which are implicit in equation (ZlOn). 

Finally we must express some caution about the claims which equation (2lOn) 
makes in regard to the spectrum of fluctuations of the 'energy' operator. These 
claims are substantially less well founded than are those that pertain m the fluctuation 
spectrum of the 'order parameter'. In the tradition of scaling theories, and, indeed, 
in keeping with the manner in which equation (2.11~) was originally suggested [24], 
this extended scaling proposal is made on phenomenological grounds, some of which 
feature in a discussion of the energy spectrum at first-order transitions to be found 
in [33]. We remark that we would nof expect the extended theory to hold unless 
the 'energy' operator is, like the 'order parameter', a strongly fluctuating quantity, 
whose signature is a divergent specific heat: it is only in these circumstances that 
it can be consistent to wite a scaling form that captures the 'singular' behaviour of 
the coexistence cuwe diameter identified in equation (212), but not the 'analytic' 
term that is actually widely observed, often to the exclusion of the non-analytic 
contribution. The situation we consider explicitly in the coursc of the simulations 
only barely satisfies this criterion: the specific heat is only logurihmical@ divergent 
in the d = 2 king universality class [MI; even this situation almost certainly calls 
for an elaboration of equation (2.1Oa), since such logarithmic behaviour k known to 
involve contributions which, in other circumstances would be dismissed as analytic 
background (sec, e.g.. 1351). We have not attempted to construct that more elaborate 
form-in part, at least because the extended scaling oltsoe (2.1Oa) turns out to offer a 
remarkably successful account of our simulations, which involve the energy spectrum 
only in the limited way we proceed to describe. 

Our specific concern is with the distribution of the fluid number density, which 
follows &om equations (2.5u), (2.8), (2.9) and (ZlOa) 

Now the structure of our proposed scaling form (2.lOn) shows that at (or close to) 
criticality the typical size of fluctuations in the energy-like operator, 6&, will vary 
with system sue L as [Acf]-' = L-('-")/", while the typical scale of the ordering 
operator fluctuation, 6M will vary as [Ah]-1 = L-o/". It follows that, to within 
corrections that are down on the leading term we retain by of order L-('-"+)l", 
we may negkcr the contribution of the energy fluctuations to the first argument of the 
function g5M,c in equation (2.13). One may fhen proceed to perform the integration 
on & to yield a result of the form 
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where $M(z,y,z)  is the function identified in equation (2.lla) prescribing the king 
magnetization distribution. We conclude then that, to within terms representing cor- 
rections m the leading finite-size-scaling behaviour, the reduced symmetry of the fluid 
manifests itself in the number-density distribution only through the mixed character 
of the scaling fields (2.6) 

Equation (2.14) is the key result for what follows. We will check and exploit its 
consequences at and, to a more limited degree, close to the fluid critical point 

Precisely at criticality equation (2.14) implies simply (appealing to (2.10~5)): 

(215) 

$ ~ ( " ) = F M ( " , y = O , z = O )  (2 16) 

-'L@'"F% ( ~ 5 ' ' a ~  -1 [p-  p,]) 
P L ( p )  OM 

where 

is a function describing the universal and statistically scale-invariant configurations 
characteristic of the critical pint .  The form of this function has been well established 
in studies of the two-dimensional spin-$ king model and its claim to describe other 
members of this universality class vindicated by studies of the spin-1 king model and 
the 44 model [30]. We note that this function is even (describing, in the magnetic 
context, the critical fluctuations of the magnetization). The fluid density distribution 
clearly does not in general have a corresponding symmetry. Accordingly the claim 
that the critical density fluctuations can be described by (2.15) is remarkable, even by 
the norms of universal phenomena. 

The consequences of equation (2.14) for the behaviour near criticality are most 
readily explored through the implied forms of the derivatives of p L ( p )  with respect to 
the well-depth parameter w (controlling the effective temperature), and the chemical 
potential. Appealing to the formal representation provided by equation (2%) we 
find 

( 2  17a) 

and 

where ( ~ ( p ) )  is the mean energy density for a given p. The first of these results 
provides assistance in refining assigned locations of coexistence and criticality (as 
described in the discussion of the simulations later). The second result fulfils a 
similar function, but in addition furnishes a further testable relation. Specifically, 
appealing to our proposed scaling form (214), together with the wdependence of 
the scaling fields recorded in (26) (and (2.8)) and feeding the consequences into 
(2.17b), we obtain at criticality (where (U) G U,) 

where 

(2.19a) 

(2.1%) 
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are universal functions. The first of these functions has a simple form: 
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PM - ( l q z )  E (220) 

a result which follows aivially by appeal to the king mntext (equation (Llla)) 
together with the identity a l n p L ( M ) / 8 h  = L d M .  The second function is non- 
trivial: its form has (like that of fjh) been established in earlier Monte Carlo studies 
of the lsing universality cIass 1301. Substituting (2.20) into (218) and appealing to 
(2.1Ob) we find 

where r (equation (2.5)) controls the temperature dependence of the ('ordering') 
scaling field h, and thus the limiting criticaI slope of the coexistence cum which i-i 
identified by the condition h = 0 (figure 1). 

i I 

F@re 1. Schematic representation of the liquid-vapour coexistence cuwe shaving the 
directions of the relevant scaling fields. ?he angles $1 and are related to the 
6eld.miuing parameten s and P (equation (26)) by --P = tan $r l  and s = tan &. 

Equation (2.21) provides a testable consequence of one form of fieldmixing (a 
thermal contribution to the ordering scaling field). ?b demonstrate the distinctive 
ansequences of the other form of mixing (the chemical potential contribution to 
the thermal scaling field) one needs to go beyond the approximations underlying 
equation (2.14). Returning to equation (2.13). and expanding in powers of the mixing 
parameter s we find that equation (2.14) may be refined to give 

P L ( P )  A % , + t ( A L b -  P ~ ] , A M ~ , A ~ T )  t APL(P) (222) 

with 
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so that, at criticality (appealing to equation (2.21)) 

(224) 

revealing the Ldependence anticipated in the argument we used to justify equa- 
tion (214) as the leading contribution to the density distribution. This correction 
term explicitly captures the consequences of the field-mixing represented in the pa- 
rameter s. Significantly, given the symmetries of &’) and FM (both even in the 
scaling variable z), equation (2.24) also represents the leading contribution to the 
critical distribution that is add in the scaling variable I. In what follows we shall 
see that, notwithstanding its Status as a ‘correction’ to the leading behaviour, the 
existence and character of this contribution can be corroborated through simulation, 
by exploiting this symmetry-in much the same way as the related energy-like singu- 
larity in the coexistence curve diameter (equation (2.12)) is exposed by exploiting the 
symmetry-breaking that it represents. 

3. Monte Carlo studies 

3.1. Preliminaries 

The Monte Carlo simulations described here were performed on the distributed array 
processors (DAPs) at the Edinburgh Parallel Computing Centre. We detail here the 
choices made in formulating the problem computationally. 

We chose to implement a geometrical decomposition of the problem, to which the 
DAP architecture [%I is particularly well suited in two dimensions. With this strategy 
our two-dimensional space is partitioned into a square array of C x C square ‘cells’, 
the array as a whole being subject to periodic boundary conditions. Each ‘cell’ is in 
the charge of one processor in the sense that the coordinates of particles within the 
cell at any instant are handled by the corresponding processor. The mapping of the 
array of cells onto the array of processors involves the choice of two parameters: the 
size of the cell, a (in relation to the fundamental microscopic length-scale parameter 
cr, defined in equation (2.2)) and the linear dimension C of the array of cells. 

The choice of a involves a compromise. If a is ‘large’ the number of particles per 
cell will be large, and the task of computing the interactions amongst the particles 
within one cell becomes a computationally intensive one, falling on a single processor. 
On the other hand, if a is ‘small’, a particle in one cell will interact with others 
in (many) distant cells, again making the task of identifying and calculating the 
interactions a demanding one. In practice we chose a = rc, the Lennard-Jones 
cutoff, discussed later. This choice results in a mean number of approximately three 
particles per cell in the pure fluid phase and 1.5 particles in the coexistence region, 
while ensuring that interactions emanating from particle in one cell do not extend 
beyond the eight cells adjacent to it. 

The characteristics of the processor array itself encourage choices of the form 
C = 2%, with L = 64 as a formal upper limit. We chose to study the cases L = 8 
and L = 16, containing respectively of order 100 and 400 particles at criticality, 
the latter proving to be the practical upper limit imposed by the need to cope with 
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critical slowing down. As the number of available processors (40%) exceeds the 
number of cells in both cases, we were able to study a number of independent 
systems simultaneously, thus considerably enhancing the rate of data acquisition after 
equilibration. 

When simulating systems whose interaction potential decays rapidly with particle 
separation, it is usual to truncate the potential to reduce the computational effort. 
In the present work, we chose to truncate the Lennard-Jones potential at a distance 
rc = 2.00. This cutoff lies at the lower end of the range of values to be found in 
the literature. Rovere ef a1 [22, U] chose rc = 2.50; S i g h  ef a1 [lo] have = 100. 
While surely of no consequence for universal characteristics of the critical behaviour, 
these differences have consequences for assignments of non-universal parameters, to 
which we will return. 

Our Monte Carlo procedure itself has a Metropolis form, similar to that described 
by Adam for the grand canonical ensemble 1371, but with two key differences. Fit 
our algorithm has a parallel form, permitting the simultaneous update of particles 
within different cells (subject to constraints that such particles do not interact). See- 
ond, we chose to implement only particle fransfer (insertion and deletion), leaving 
particle moves to be performed implicitly as a result of repeated transfers. This choice 
is acceptable formally (it clearly realizes an ergodic system); it is also physically well 
motivated since it directs the computational effort at the density fluctuations, which 
are the bottleneck for configuration space evolution, the intrinsic inefficiency of par- 
ticle insertion at high densities being compounded by the problem of critical slowing 
down. However we have not attempted to determine systematically whether this 
choice is optimal, given the current objectives. We note for future reference that 
the algorithm actually utilizes not the true (reduced) chemical potential p featuring 
in equation (2.3) ef seq, but an effective chemical potential p* to which the true 
chemical potential is related by 
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where po is the chemical potential in the non-interacting (ideal gas) limit. It is this 
effective value that features in the results that follow. In a similar vein, we will also 
follow the convention according to which the system density is expressed as the mean 
number of particles, p*, within the region defined by the Lennard-Jones potential 
parameter O: 

Finally, for the observables to be recorded, we chose the distribution of the 
particle density p r ( p )  (identitied in the lint instance as a histogram of particle 
number), together with the energy density function ( ~ ( p ) ) ,  identifed as the mean 
value of the energy density (2.46) for each value of p explored in the course of the 
simulation. 

3.2. Equilibration and sampling considerarions 

Our principal concern in this work is with the behaviour on (or near) the liquid- 
vapour coexistence curve, and at the critical point in which it terminates. The 
metastable states associated with the former and the critical slowing down associ- 
ated with the latter both result in extended equilibration times, the length of which 



Dens$ fllrctuarions in the critical &id 3097 

it is essential to gauge. lb do so we carried out a series of test runs, in the vicinity 
of the coexistence curve (where equilibration problems are most acute), located in a 
manner to be described in the following section. The test runs each comprised a pair 
of simulation runs, each assigned identical model parameters, but different starting 
configurations. In the one case the run was started from a pure vapour configuration 
while in the other a pure liquid conliguration was used. These initial configurations 
were themselves the product of preliminary runs performed well within the respective 
single phase regions. Over the course of each simulation we monitored the time 
evolution of the density distribution (and the mean density itself) by dividing each 
run into a number of consecutive measuring periods, each consisting of some 2 x lo5 
Monte Carlo steps per ceII ( M a ) ,  and accumulating obnemtions over each measuring 
period. Successive observations were separated by a number of intermediate MCS to 
reduce correlations in the data. Comparisons of the distributions built up over each 
period thus served to aid the identification of any systematic trends in the behaviour. 
The behaviour ObSeNed was found to depend on the system size, the initial config- 
uration and the chosen position on the phase boundary. The essential points are 
made in figures 2 and 3, which illustrate respectively the problems of metastability 
and critical-slowing down. We discuss them in turn. 

05 MCS 
20.w - m.0 7 20.00 . 

'2 x lo5 MCS 4 105 MCS 6 x 1  

0 10.00 . A 10.00 . A 

m a o ]  1 x lo8 MCSi 

20.w 1 '05 MCS 

Figure 2 me lime evolution of the densily distribution of a C = 16 srlem initially in 
a metastable vapour phase, a1 a temperature 1% blow aiticality. 

Figure 2 shows the time evolution of the density distribution of a system (of 
size L: = 16) that ties close to coexistence at a temperature that is 1% below the 



3098 N B Miding and A D Bruce 

8 x A3 m 8 0 80 0 

2 ei 
8 
d 

S 
2 

0 
0 - 

0 
X -4; 

1 N 

N 

2 0 

2 



Density fluctuations in the critical piid 3099 

critical temperature (whose location we discuss later). Each distribution represents 
data accumulated over a series of measuring periods, each of 2 x IO5 MCS in duration. 
The initial state of the system lies in the pure vapour phase; the chemical potential 
slightly favours the tiquid phase. The system remains in the metastable vapour phase 
for approximately 5 x lo5 MCS before condensing, over a relatively short period, to 
the liquid phase where it remains. In this regime, the equilibration period (controlled 
by the extent of the potential period of metastability) was set at 1 x lo6 MCS for the 
L = 16 system (and 3 x lo5  MCS for the L = 8 system where metastability effects 
are less pronounced). 

Figure 3 shows the time evolution of the density distribution very close to criticality 
(again for L = 16), the data being gathered in the same fashion as described earlier. 
The density exhibits large and slow fluctuations between two still well-separated ranges 
which represent the vestiges of the coexisting phases. 'I)pical critical configurations 
are shown in figure 4. In this regime, guided by the khaviour of the mean density, 
we utilized equilibration periods of 2.5 x IO6 and 4 x l o5  for L = 16 and L = 8 
respectively. For both system sizes, the number of equilibration steps required in 
the region beyond the cri:ical point was considerably less than in the critical region, 
decreasing systematically with increasing temperature. 

The number of sample observations required to build a time-invariant distribution 
free of spurious structure, depends on the proximity to the critical point. For the 
C = 16 system in the two-phase region, the data shown below typically involve 
1 x lo6 Observations, each separated by 15 intermediate Ma. In the critical region we 
needed observation periods (long compared with the typical time-scale of the critical 
fluctuations) comprising up to 2 x lo6 observations separated by 25 intermediate MCS. 
Observations times of approximately half these values were found to be adequate for 
the L = 8 system. 

3.3. Results 

The computational problem p e d  by the location of the nitical point in the fluid 
is substantially harder than its magnetic counterpart. In the (Ising) magnet the line 
of phase coexistence is prescribed by symmetry; in the fluid it has to be identified 
empirically, as a prelude to the location of the critical point in which it formally 
terminates. There are many possible computational criteria one may choose to effect 
this identification. Motivated by our central concern with the density distribution, we 
chose to adopt the criterion that the line of phase coexistence is the set of points 
(more precisely, as discussed later, a subset of those points) in p-w space along which 
the density distribution displays two peaks of equal height: this condition represents 
[33] the finite-size analogue of the free-energy equality that characterizes the phase 
boundary in the thermodynamic limit. In finding and tracking this set of points we 
made substantial use of the derivatives of the density distribution with respect to the 
two control parameters p and w. The derivative with respect to w is provided by the 
energy function measured in the simulation (cf equation (2176)); the derivative with 
respect to p is trivially related to the distribution itself (equation (217a)). Appeal to 
these derivatives provides initial estimates (subsequently refinable) for the changes in 
p and w that, together, preserve the equality of heights of the two peaks. 

Implementing this strategy we identified the set of p* - w values (recall equa- 
tion (3.1) for the definition of p * )  shown in figure 5. The results for L = 8 and 
I: = 16 are fully consistent with one another to a high precision: the value of p* 
(for a given w )  fulfilling the equal-height criterion is identitiable to four significant 
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Figure 4 '&pica1 plticle mnfigurafions of the t = 16 system ai mlicalily 
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figures in the t = 8 system; with t = 16, it is identifiable (at substantially more 
computational cost) to five significant figures. 

?he density distributions associated with a subset of these p i n t s  are shown in 
figures 6(a) and 6(b), for I: = 8 and L = 16 respectively. l ko  distinct types of 
crossover behaviour (with increasing t) are discernible. 

For strong enough couplings the change from L = 8 to 1: = 16 is accompanied 
by a sharpening of the double-peaked character of the distribution. This is consistent 
with the expected behaviour on the line of phase coexistence, which should asymptot- 
ically (for large enough system size L) show two Gaussians centred on the densities 
of the two coexisting phases. On the other hand, for weaker couplings, the change 
from t = 8 U) I: = 16 is accompanied by a broadening of the two peaks, and a 
transfer of weight into the central portion of the distribution. This is indicative of 
single-phase behaviour, where the limiting distribution will be a single Gaussian. 

On this basis one can see immediately from a comparison of figures 6(a) and 
6(b) that couplings w of 8.925 or below are subcritical while those of 9.1 or above 
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are supercritical. Thus the majority of the points shown in figure 5 actually identify 
not the coexistence curve itself but the continuation of it that persists in finite-size 
systems. 

The critical point ilself is formally identifiable as the point on this 'pseudo'- 
coexistence curve that separates these two different forms of crossover. The coupling 
which we have identilied as coming closest to realizing this critical state is tuuc = 9.00. 
The evidence supporting this assignment is as follows. 

First, given an appropriate choice of the non-universal scale factor a&, the associ- 
ated L = 16 density distribution can be mapped into very close correspondence with 
the universal function 13, (equation (2.15)), prescribed in earlier studies of members 
of the king universality class [30]. This mapping is shown in figure 7. The extent 
of the agreement is a mofivafion for our assignment of the critical coupling (made 
specifically to optimize this mapping) rather than further corroboration. However, 
the fact that it is possible at all, provides clear support for the general framework 
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Figure 7. The Ruid density distributions for f = 8 and C = 16 a1 aitical- 
ily (p: = -2.202, w< = 9.00) expressed as functions of the xaling variable 
1: E ~ p / " a M - ' [ p *  p:] The full N w e  is the ked point function i k (z)  appro- 
priate for lhe king universality class PO]. The non-universal m l e  factor a~ is chosen 
so that. for f = 16, the scaling variable .T has unit variance, consistent with the mnven. 
lions implieil in the definition of $h(s). The value of @/U implicit in the horizontal 
Scale k @ / v  = 0.125(1). The inset shorn lhe size of the change in heighl of lhe 
C = 16 distribution peaks mulling f" a change A w  = 0.02 along the line of 
pseudoipexislenac. 

advanced here, linking the fluid and Ising magnet. 
The consistency of the picture is further supported by the near-scaling behaviour 

evident at this near-critical point: figure 7 also shows the corresponding distribution 
for the L = 8 system, plotted as a function of the appropriate scaling variable with 
the same assignment of the scale factor a,,.,, and with the index p / v  assigned so 
that this distribution (like the others shown) has unit variance. The value required to 
satisfy this criterion is p / u  = 0.125(1), in embarrassingly good correspondence with 
the exact king limit p / v  = i. Although the differences from the universal limiting 
form are quite apparent for the C = 8 system, they are quite comparable in size and 
(at first sight) also in form with discrepancies found in the analysis of q54 models [38] 
which were subsequently shown to be attributable to corrections to scaling. We shall 
see, however, that they contain further structure of a significantly different form. 

The remaining evidence in support of our location of criticality comes from our 
measurements of the energy function ( ~ ( p ) ) .  Figure 8 shows the results for our 
two system sizes at criticality. According to our proposed scaling form (2.21) this 
function consists of two terms, the one explicitly odd (linear) in the scaling variable, 
and the other (as consideration of the king limit shows) even. The two components 
may thus be identified by exploiting these different symmetries. The result for the 
odd (and asymptotically dominant) component of the energy function is expressed in 
the assignment r = -0.529(2), which is consistent with the value obtained from the 
measured slope of the coexistence curve. The results for the even (sub-dominant) 
contribution to the energy function are expressed in figure 9. The smooth curve 
represents the result for the function fig') established in earlier studies of the Ising 
universality class [30]. The data points represent the symmeterized energy function 
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Figure 8, The fluid energy density for & = 8 and L = 16 at criticality. The full curve 
(cf equation (2.21)) is of Ihe form c[p* - p:] where, h m  the measured slope of the 
peudocoewistence a w e  (figure 5) r = -0.529(2). 

us defined by 

u“( (p)  i A p )  = (2a,)-’Ld-”” ( I U ( ( P )  + A P )  + U ( ( P )  - A P )  - 2 U ( ( P ) ) } )  (3.3) 

which represents the ‘even’ part of the left-hand side of equation (2.21) with uc 
and p, replaced by their finite-size equivalent forms. This is one way of coping 
with ‘corrections’ to equation (221); it has the merit that, in this amended form, 
equation (2.21) satisfies the sum rule that follows on integration with respect to p. 
The mllapse shown is effected with the assignment of the single non-universal scale 
factor a, together with a value l / v  = 1.03(3), to be compared with the lsing value 
U = 1. While the agreement as regards the index is satisfactory, we believe that 
here (as in figure 7) the scaling funcfion represents a substantially more compelling 
signature of the universality class. 

This general point is made in an even more striking way in the context of the 
correcfbns to scaling, manifesting themselves in the diffcl-enm between the measured 
density distributions and their limiting king form (cf figure 7). There are, in fact, 
four sources for such discrepancies. Differences between the assigned and true values 
of wc and po are responsible for two of these, giving rise (to the extent that they 
exist) to WO refevunt corrections, associated with (not-quite-zero) values of h and T .  

The thud source of discrepancies is the leading irrefevunr scaling field associated with 
the king universality class, which is not included in the scaling msua (2.1Oa). Finally, 
there is the correction arising from scalingfield-mixing, identified in equation (2.24). 
Identifying the latter correction amidst the others seems an unlikely proposition. 
There are a number of reasons why it does actually prove possible. 

The first b the ymmefty of the correction (2.24), whicb is odd in p-p,. One may 
thus antisymmetrize the measured distribution about its median point to eliminate 
the corrections associated both with the leading irrelevant correction to scaling and 
the even contribution associated with the thermal scaling field T.  

The second mitigating circumstance is that the functional forms of the WO anti- 
symmetric corrections are independently known. The correction due to a non-zero 
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Figure 9. The aitical fluid energy density for t = 8 and C = 16 symmcuized aboul p: 
and scaled as prescribed in quation (3.3), “ p a d  wilh the function FE’) appropriate 
to the king universality dass (Cull awe) .  The horizontal Scale is identical lo that featuring 
in figure 7. The non-univemal scale factor has k e n  ehosen 50 (hat the t = 16 data 
and the king form match at .z = 0. ?he value d 11” implicit in lhe Yettical =ale is 
I / ”  = 1.03(3). 
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Figure 10. The slmcture of lhe WO anlisymmetrie mrredions to the nearzritical density 
distribution. The full NNC show lhe form arising Gum Ihe fieldmixing (equation (224)). 
l l w  broken a w e  shows the form aSSOEiated wilh a small non-zero ordering field h 
(equation (2.19~)). 

h is controlled by the function fj%’) (equation (2.1%)); the correction due to field- 
mixing is prescribed in equation (2.24). Both correction forms are thus determined 
by the results of king model studies. Figure 10 shows that they have quite distinct 
signatures. A little thought then show that our measured distribution must have 
contributions from both of these sources (if it has a contribution from either) since 
mutual cancellation must occur to satisfy the qual-peak-height criterion imposed to 
locate coexistence and criticality. The latter criterion thus imposes a constraint on the 
proportion of the two contributions. ?b determine the underlying contribution associ- 
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ated with the field-mixing, one may thus identify the antisymmetric contribution to the 
measured distribution, and then remove from it the contribution due to departures 
from coexistence (consistent with the noted constraint). The results of applying this 
procedure to the measured L = 16 distribution (figure 7) are shown in figure 11. The 
correction made to a m u n t  for departures from coexistence corresponds to a shift in 
our assigned pc by an amount (-0.000 13 to be precise) small compared with the 
uncertainties (see later) associated with the location of the critical point dong the 
line of pseudocoexistence. The resulting agreement v d h  the predicted form is ex- 
cellent, providing striking corroboration of the mixed-scaling-field theory. The single 
scale factor required to effect this mapping implies a value s = -0.24(3) for the 
parameter describing the more significant of the two forms of scaling field-mixing. 

?b conclude this section we summarize our assignments of the critical parameters, 
together with their error bounds. Defining (in accordance with convention) T: 
4/w,  and recalling the other notation established in equations (3.1) and (3.2) we 
assert: 

= 0.44 0.005 pz = -2.20 & 0.04 p: = 0.368 & 0.003. (3.4) 

The value of p; is tied (by our tightly defined line of pseudo-coexistence) to the 
value of wc; the value of p: is both the mean and median of the critical density 
distribution. The discussion of these assignments and uncertainties features in our 
mncluding section. 

A Conclusions 

The general thesis motivating this work is that the fluid critical-point problem should 
and can be more fully integrated with its magnetic counterpart. This thesis has 
both a philosophical and a practical element. In a philosophical vein we wished to 
demonstrate more explicitly that (and the sense in which) the fluid and the magnet 
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belong to the same universality class. In a practical vein we set out to explore whether 
the computational framework deployed so successfully in studies of magnetic systems 
could be generalized to yield more productive ways of simulating near-critical fluids. 

The first of these objectives is, we believe, convincingly fulfilled in figures 7 
and 9. These figures bear out our general scaling form (2lOa) and the picture it 
expresses: the near-critical patterns of the fluid density fluctuations match those of 
the magnetization fluctuations in the Ising ferromagnet. 

As regards the general computational issues, we believe that the methods we have 
presented have proved materially more successful than those of our predecessors: the 
uncertainties associated with the critical-point parameters assigned in equation (3.4) 
represent a significant improvement on the error bounds cited by others (at least, 
those who cite any). Moreover, the uncertainties cited in (3.4) are, we believe, con- 
servative. Thus, the range of coupling values consistent with the quoted uncertainties 
extend to two values (U = 9.1 and U = 8.925) on either side of our designated 
critical value (cf figures 6(a)  and 6(b))  which are certainly sub- and super-critical 
respectively. In fact, if we were to assume that finite-size corrections die out with L 
at the rate suggested by comparison of our L = 8 and L = 16 ‘critical’ data, the 
requirement (then largely rationalized) that the L = 16 distribution should match 
the king form provides substantially tighter bounds an the critical parameters. The 
point is illustrated by the inset in figure 7 which shows the sensitivity of the measured 
L = 16 distribution to changes in the control parameters. Specifically, the inset shows 
the change in the height ol the L = 16 distribution peaks resultig from a change in 
the coupling w of [ A w  = 0.02 corresponding (cf the units introduced in (3.4)) to a 
change of only kAT = 0.001 along the tine of pseudo-coexistence (i.e. with p* also 
changed so as to maintain the equal-height criterion). The potential sensitivity of the 
method should be apparent Indeed it should be apparent a priori one niust fare 
better in searching for criticality if one’s guide is the matching of a readily measurable 
function to an independenlly known form appropriate for a fiite-size yslem, than if 
one has to extrapolate a power law that is finitesize limited and makes use of only a 
fragment of the data available from the simulation. 

riming to the critical parameters themselves, we note that, in the same units as 
those employed in equation (3.4) Xien and Valleau [7] suggest T: between 0.625 
and 0.7, Henderson [SI gives T; =0.56,  Barker el a2 [9] quote T; = 0.52, Rovere 
et a1 [23] suggest T; = 0.50 & 0.02 while S i g h  et a1 [lo] quote T; = 0.472. 
Comparisons amongst these assignments, and with our own estimate, are complicated 
by differcnces in the value assigned to the LennardJones cutoff, whose effect on 
the critical parameters is significant, a point emphasized by Smit and Frenkel [39]. 
One can estimate the extent of the consequences of the different cutoff assignments 
by Utilizing the implied values of the second vinal coefficient to give the associated 
van der Waals transition temperature. Making the reasonable approximationt Wit 
the Eractional change in the true critical temperature (arising from a change in the 
cutoff) matches the fractional change in the van der Waals transition temperature, 
we fid, for example, that the difference between the cutoff (rc = 2 . 5 ~ )  employed 
by Rovere ef a1 [U] and our own choice (re = 2u)  accounts for approximately 
one-third of the difference between their assignment of the Critical temperature and 

N B Wilding and A D h c e  

t This approximalion reproduces lather well lhe dfwmcc reported in (391 between the Vansition e m -  
peralure of a syslem described by lhe full potential and a syslem with a plential both wnwted and 
shifted. 
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our own, leaving a discrepancy which we believe is significant. Thus we believe that 
virtually all previous studies have significantly overestimated the critical temperature, 
presumably because (without the insights offered in this work) it is all too easy to 
mistake the finite-size extension of the coexistence cwve for the real thing. This 
point has also been made recently by Mon and Binder [40] in a critique of Monte 
Carlo studies of phase coexistence using the Gibbs ensemble: the point at which the 
‘densities’ (however identified) of the two coexisting phases merge in a finite system 
can constitute a serious overestimate of the critical point, the effect being particularly 
pronounced in two dimensions. It is thus a little hard to understand the relatively 
good agreement between our estimate of tlie critical temperature and that of Singh et 
a! [lo] on the basis of just such a Gibbs ensemble stuey, ,with no analysis of finite-size 
effects. Indeed Smit and Frenkel [39] have repeated the Gibbs ensemble calculations 
and analysis of Singh et ai, with the result = 0.515 & 0.002 which does display 
the expected overestimate (with respect to our own work). 

l iming  to the distinctive respects in which the Ruid diners from the King magnet, 
we note that the results for the energy function (figure 9) bear out equation (2.21), 
and thus corroborate one aspect of our generalized scaling theory (equation (2.1&)), 
namely the manner in which the temperalure features in the ordering scaling field 
h (equation (2.6)). More significantly, we have seen that the second kind of field- 
mixing (the fact that the chemicalpotential features in the lhermal scaling field T )  has 
a quite distinctive signature in the antisymmetric corrections to the limiting form of 
the critical density distribution. This success is further testimony to the powert of the 
methods advanced here. Experiments on fluids have found it difficult to demonstrate 
this mixing through the resulting non-analytic contribution to the tdependence of the 
coexistence curve diameter (2.12); any Monte Carlo procedure that simply eies to 
emulate such experiments would surely fail. The present procedure circumvents these 
problems by using the additional information on a whole range of scaling functions 
directly accessible to Monte Carlo techniques. 

Finally we remark that if one wishes to refine the simulation results presented 
here, one must certainly find a way of handling larger system sizes. While growing 
computational power may make such studies feasible, some advances at an algorithmic 
level are clearly called for. The algorithm underlying this work suffers from two well 
known problems: the intrinsic inefficiency of particle exchange with a dense system; 
and the problem of critical slowing down. One method for improving the acceptance 
rate in the grand canonical ensemble has been suggested [41]. However it would 
appear that collective (cluster) updating schemes [42] hold the greatest promise for 
tackling critical slowing down. Their extension to off-lattice problems is the subject 
of ongoing study. 
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